*hello * PSpice Model Editor - Version 16.3.0 *$ *------------------------------------------------------------------------- * * 74116 DUAL 4-BIT LATCHES WITH CLEAR * * The TTL Data Book, Vol 2, 1985, TI * MCG 07/09/93 * .SUBCKT 74116 C1BAR_I C2BAR_I CLRBAR_I D1_I D2_I D3_I D4_I Q1 Q2 Q3 Q4 + optional: DPWR=$G_DPWR DGND=$G_DGND + PARAMS: MNTYMXDLY=0 IO_LEVEL=0 * U116_1 BUFA(7) DPWR DGND + D1_I D2_I D3_I D4_I C1BAR_I C2BAR_I CLRBAR_I + D1 D2 D3 D4 C1BAR C2BAR CLRBAR + D0_GATE IO_STD * U116_2 DLTCH(4) + DPWR DGND + $D_HI CLRBAR LAT + D1 D2 D3 D4 + Q1 Q2 Q3 Q4 + $D_NC $D_NC $D_NC $D_NC + D_74116 IO_STD * U116_3 INVA(2) + DPWR DGND + C1BAR C2BAR + C1 C2 + D0_GATE IO_STD * U116_4 AND(2) + DPWR DGND + C1 C2 + LAT + D0_GATE IO_STD * U116CON CONSTRAINT(7) DPWR DGND + CLRBAR C1BAR C2BAR D1 D2 D3 D4 + IO_STD + + WIDTH: + NODE = CLRBAR + MIN_LO = 18NS + MIN_HI = 18NS + + WIDTH: + NODE = C1BAR + MIN_LO = 18NS + MIN_HI = 18NS + + WIDTH: + NODE = C2BAR + MIN_LO = 18NS + MIN_HI = 18NS + + SETUP_HOLD: + DATA(4) D1 D2 D3 D4 + CLOCK LH = C1BAR + SETUPTIME_HI = 8NS + SETUPTIME_LO = 14NS + RELEASETIME = 2NS + HOLDTIME = 8NS + + SETUP_HOLD: + DATA(4) D1 D2 D3 D4 + CLOCK LH = C2BAR + SETUPTIME_HI = 8NS + SETUPTIME_LO = 14NS + RELEASETIME = 2NS + HOLDTIME = 8NS + + SETUP_HOLD: + DATA(1) C1BAR + CLOCK LH = CLRBAR + SETUPTIME = 8NS * .ENDS *$ .SUBCKT peakmeter input output PARAMS: DELAY={100u} T_T2 B 0 C 0 Z0=1k TD={Delay} T_T1 N16919 0 B 0 Z0=1k TD={Delay} R_R1 C 0 1k TC=0,0 E_GAIN2 OUTPUT 0 VALUE {1 * V(N16975)} E_ABM1 N16975 0 VALUE { If((V(B)>v(INPUT) & (V(B)>v(C))),v(B),If((V(B)3.7V. * Line regulation and ripple rejection) are set with * Rreg= 0.5 * dVin/dVbg. The temperature dependence of this * circuit is a quadratic fit to the following points: * * T Vbg(T)/Vbg(nom) * --- --------------- * 0 .999 * 37.5 1 * 125 .990 * * The temperature coefficient of Rbg is set to 2 * the band gap * temperature coefficient. Tnom is assumed to be 27 deg. C and * Vnom is 3.7V * Vbg 100 0 DC 7.4V Sbg (100,101) (Input,Ground) Sbg1 Rbg 101 0 1 TC=1.612E-5,-2.255E-6 Ebg (102,0) (Input,Ground) 1 Rreg 102 101 7k .MODEL Sbg1 VSWITCH (Ron=1 Roff=1MEG Von=3.7 Voff=3) * * Feedback stage * * Diodes D1,D2 limit the excursion of the amplifier * outputs to being near the rails. Rfb, Cfb Set the * corner frequency for roll-off of ripple rejection. * * The opamp gain is given by: Av = (Fores/Freg) * (Vout/Vbg) * where Fores = output impedance corner frequency * with Cl=0 (typical value about 1MHz) * Freg = corner frequency in ripple rejection * (typical value about 600 Hz) * Vout = regulator output voltage (5,12,15V) * Vbg = bandgap voltage (3.7V) * * Note: Av is constant for all output voltages, but the * feedback factor changes. If Av=2250, then the * Av*Feedback factor is as given below: * * Vout Av*Feedback factor * ---- ------------------ * 5 1665 * 12 694 * 15 550 * Rfb 9 8 1MEG Cfb 8 Ground 265PF * Eopamp 105 0 VALUE={2250*v(101,0)+Av_feedback*v(Ground,8)} Vgainf 200 0 {Av_feedback} Rgainf 200 0 1 Eopamp 105 0 POLY(3) (101,0) (Ground,8) (200,0) 0 2250 0 0 0 0 0 0 1 Ro 105 106 1k D1 106 108 Dlim D2 107 106 Dlim .MODEL Dlim D (Vj=0.7) Vl1 102 108 DC 1 Vl2 107 0 DC 1 * * Quiescent current modelling * * Quiescent current is set by Gq, which draws a current * proportional to the voltage drop across the regulator and * R1 (temperature coefficient .1%/deg C). R1 must change * with output voltage as follows: R1 = R1(5v) * Vout/5v. * Gq (Input,Ground) (Input,9) 2.0E-5 R1 9 Ground {R1_Value} TC=0.001 * * Output Stage * * Rout is used to set both the low frequency output impedence * and the load regulation. * Q1 Input 5 6 Npn1 Q2 Input 6 7 Npn1 10 .MODEL Npn1 NPN (Bf=50 Is=1E-14) * Efb Input 4 VALUE={v(Input,Ground)+v(0,106)} Efb Input 4 POLY(2) (Input,Ground) (0,106) 0 1 1 Rb 4 5 1k TC=0.003 Re 6 7 2k Rsc 7 9 0.275 TC=1.136E-3,-7.806E-6 Rout 9 Output 0.008 * * Current Limit * Rbcl 7 55 290 Qcl 5 55 9 Npn1 Rcldz 56 55 10k Dz1 56 Input Dz .MODEL Dz D (Is=0.05p Rs=3 Bv=7.11 Ibv=0.05u) .ENDS * *$